The Role of Advanced Lipoxidation End-Products (ALEs) in Diabetic Complications

John W. Baynes
University of South Carolina

Two Topics

- The role of lipids in chemical modification of proteins and development of diabetic complications
- The mechanism by which metabolic memory or imprinting affects the risk for diabetic complications

Part I

LIPIDS

The Vitamin
$$B_6$$
 Family

 $\begin{array}{c} NH_2 \\ HO \\ \end{array}$
 $\begin{array}{c} NH_2 \\ \end{array}$
 $\begin{array}{c} Pyridoxamine \\ \end{array}$
 $\begin{array}{c} OH \\ HO \\ \end{array}$
 $\begin{array}{c} OH \\ \end{array}$
 $\begin{array}{c} HO \\ \end{array}$
 $\begin{array}{c} OH \\ \end{array}$
 $\begin{array}{c} Pyridoxine \end{array}$
 $\begin{array}{c} Pyridoxal \end{array}$

BENEFITS of PM in STZ-diabetic rats

- Retarded development of renal and retinal disease
- Decreased chemical modification of tissue proteins

BUT

- PM did not decrease levels of the AGE pentosidine
- PM inhibited hyperlipidemia and ALE formation
- Strong correlation between plasma triglycerides & CML
- Strong correlation between triglycerides & albuminuria

Zucker falfa rat (Model of Syndrome X)

Obese
Hyperlipidemic
Hypertensive
Insulin Resistant

Summary

- Pyridoxamine inhibits the progression of nephropathy in diabetic and obese rats.
- Pyridoxamine inhibits AGE/ALE formation in diabetic and obese rats.
- Pyridoxamine inhibits development of hyperlipidemia in diabetic and obese rats.
- PM inhibits lipoxidative chemical modification of protein, trapping similar intermediates in vitro & in vivo.

CONCLUSION

Lipids are an important source of chemical modification of proteins in diabetes and hyperlipidemia.

Part II

The Mechanism of

Metabolic Memory

or

Metabolic Imprinting
in Diabetes

Assumptions

- Most significant damage is oxidative in nature.
- Protein is a useful sensor, but relevant damage is to genetic material.
- Genetic damage is silent.

Proposal

Damage to genome of target tissues leads to:

- 1) loss of cell replicative capacity and/or
- 2) loss of cellularity.

Origin of Metabolic Memory

- Cell damage is propagated by cell division.
- Younger cells have greater replicative capacity.
- Early damage will be amplified, even after initiation of more rigorous control.
- Early protection (rigorous control) will have a long-term effect.

Analogy

Irradiation → Oxidative Stress Irradiation of animal lenses *in vivo*Cataracts develop more rapidly in younger animals^{1,2}

- 1. O Hockwin (1962) Exp Eye Res 1:422-426.
- 2. DG Cogan and DD Donaldson (1951) Invest Ophthalmol 45: 508 ff.
- 3. AV Desjardins (1931) Am J Roentgenol 26: 643 ff.2.

Conclusions

- The earlier and more severe the period of poor control, the more severe the long-term consequences.
- Rigorous metabolic control at an early age yields (apparent) protection during later periods of poorer control.
- Memories may be good or bad.